Fine Structure of Wing Scales in Chrysozephyrus Ataxus Butterflies

نویسندگان

  • Jiřina Matějková-Plšková
  • Filip Mika
  • Satoshi Shiojiri
  • Makoto Shiojiri
چکیده

We performed scanning electron microscopy observations of the scales on the dorsal surfaces of wings of male and female Chrysozephyrus ataxus butterflies. The male butterfly has curly scales on the blue or green wings. It was deduced that the interference of the selective incident rays with the wavelength in 560 nm 420 nm and 340 nm 250 nm occurs incoherently by layers 270 nm thick piled in the flat grooves which are enclosed by the ridges and ribs on the curled scale. The metallically glittering green-violet hues of the male wings is thereby attributed to the reflection of the human visible rays in 560 nm (green) 420 nm (violet). The vivid violet marks in the female’s forewings were also explained as the result of reflection of the incident rays in 400 nm 300 nm from the layers 190 nm thick in the flat grooves on the dorsal scale. Although the monolayered cuticle structure was observed on the ridges of these scales, its contribution to the wing colouration must be less because of a small width of the ridges as compared with the flat grooves. The scales in the dark brown areas of the female wings are different in structure from these scales; they have not any layers but windows enclosed by the ridges and ribs. Most of the light through the windows is absorbed in the lower laminae containing the eumelanin. These results were deduced using data of a previous optical measurement by Imafuku et al. (Zool. Sci. 19 (2002) 175) and elucidated consistently their conclusion. [doi:10.2320/matertrans.MB201001]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wing colors of Chrysozephyrus butterflies (Lepidoptera; Lycaenidae): ultraviolet reflection by males.

Wing colors of the four species of Chrysozephyrus butterflies were analyzed by a spectrophotometer. As the dorsal wing surface of males showed a strong reflectance when the specimen was tilted, measurements were made by the tilting method. The dorsal wing surface of males which appears green to the human eye reflected UV (315-350 nm) as well as green light (530-550 nm). The reflectance rate of ...

متن کامل

Photonic Crystal Structure and Coloration of Wing Scales of Butterflies Exhibiting Selective Wavelength Iridescence

The coloration of butterflies that exhibit human visible iridescence from violet to green has been elucidated. Highly tilted multilayers of cuticle on the ridges, which were found in the scales of male S. charonda and E. mulciber butterflies, produce a limited-view, selective wavelength iridescence (ultraviolet (UV)~green) as a result of multiple interference between the cuticle-air layers. The...

متن کامل

Moth Wing Scales Slightly Increase the Absorbance of Bat Echolocation Calls

Coevolutionary arms races between predators and prey can lead to a diverse range of foraging and defense strategies, such as countermeasures between nocturnal insects and echolocating bats. Here, we show how the fine structure of wing scales may help moths by slightly increasing sound absorbance at frequencies typically used in bat echolocation. Using four widespread species of moths and butter...

متن کامل

Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies.

The beads in the wing scales of pierid butterflies play a crucially important role in wing coloration as shown by spectrophotometry and scanning electron microscopy (SEM). The beads contain pterin pigments, which in Pieris rapae absorb predominantly in the ultraviolet (UV). SEM demonstrates that in the European subspecies Pieris rapae rapae, both males and females have dorsal wing scales with a...

متن کامل

Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies.

A small but growing literature indicates that many animal colours are produced by combinations of structural and pigmentary mechanisms. We investigated one such complex colour phenotype: the highly chromatic wing colours of pierid butterflies including oranges, yellows and patterns which appear white to the human eye, but strongly absorb the ultraviolet (UV) wavelengths visible to butterflies. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011